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AN O P T I M A L  S H O C K - E X P A N S I O N  S Y S T E M  

IN A S T E A D Y  GAS F L O W  

A.  V .  O m e l ' c h e n k o  a n d  V .  N .  U s k o v  UDC 533.6. 011.72 

We study the steady, supersonic, uniform flow of an inviscid perfect gas passing successively through 
a simple Prandtl-Mayer expansion r and a shock j which have one direction. The system of two waves 
$2 = {r,j} is specified by two parameters: the Mach number M and the net angle of freestream turning/3~. 

As the systems of waves considered in [1-3], for certain strengths of the waves included in the system S~ f), 
this system is optimal for most gas-dynamic variables f .  Analytical solutions are presented which make it 
possible to determine monotonic and nonmonotonic ranges of gas-dynamic variables behind the system and 
to calculate the wave strengths when the system is optimal. 

1. The system of waves $2 = { r , j }  transforms the set of gas-dynamic variables F = {p, p, T,  pv 2, po, 
po, To} that characterize the free stream into the set F2 = {p2, p2, :/'2, p2v 2, p02, p02, To2} whose elements 
determine the flow properties behind the shock wave. The members f and ]'2 of the sets F and F2 are related 
by the following wave relations [1]: 

2 iii)' iII)= i!I) = H 
k----I 

Here fk-1 and fk are variables ahead of and behind a wave ( f k - l - f  for k = 1), the quantity I~P)=_J k = Pk/Pk-I 
determines the strength of an individual wave, and the quantity ,Is = JIJ2 determines the strength of the 
wave system. 

Omel'chenko and Uskov proved [1] that for given values of M and the specific heat ratio % the gas- 
dynamic variables f2 behind the wave system $2 are expressed only in terms of the strength of the system J~ 
and the corresponding values of the variables f.  In particular, 

I~P)=_-EI = p l / p  = J~/'Y, I~P)-Ea = p2/pl = (J2 + e ) / ( l  + eJ2), ~ = ( 7 - 1 ) / ( ~ ' + 1 ) ,  

I!T)--Os = T2 /T  = J s /Es  = t((U)/~(U2), /~(U) = 1 + e(M 2 - 1), 

dd)- -C,  = d2/d = J~(M2/M2), d = pv 2. 

The angle of rotation of flow in the system 

2 

k=l 

is given by the relations 

(~)1 ---- -1 ,  ~D2 = +1) (1.1) 

BI r) = w ( M 1 ) -  w(M); 

B~J)=arctan J 2 + e  j ~ )  + e _ ( l _ e ) ( J 2 _ l )  ' 

(1.2) 
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where the values of the Prandtl-Mayer function co(M) are calculated from the Mach numbers ahead of the 

wave M and behind it M1; the quantity J~)  = (1 + r 2 - e determines the strength of a normal shock in 
the flow with M1. The functions (1.2) and (1.3) are analyzed by Uskov [4] in the plane of wave strengths 
/3, A = lnJ. 

We have previously shown [1] in a more general formulation for a system of n shocks that the quantities 

I~ f) can have optimal values and determine an optimal system S (f) for an arbitrary gas-dynamic variable f.  

The quantities Jk in S (f) are found from the optimal conditions and determine the geometry of bodies for 
which S (f) is realized in the flow around these bodies. Such optimal systems are called gas-dynamically 
imposed. 

Certain geometrical constraints are often imposed on aerodynamic bodies. For example, for supersonic 
flow past wedge-plate or cone-cylinder configurations, the net angle of flow turning ~3s in the system of 
waves obtained is assumed to be given. Systems in which the strengths of their waves depend on geometrical 
constraints are called geometrically imposed. The numerical investigation of Grigorenko and Kraiko [5] of the 
system 5'2 = {j, r} obtained for flow past the bodies mentioned above with a given value of 3s indicates the 
nonmonotone behavior of variables f when M and 3s are varied. Hence, geometrically imposed systems can 
also be optimal. 

In the present paper, we prove that for given values of M and 3s, the geometrically imposed system 
S~/) = {r,j} can be optimal for most of the variables f .  The strengths J~f) and J~f) at which S~ f) is realized 
depend on M and 3s and differ significantly from the corresponding strengths in optimal, gas-dynamically 
imposed systems. 

Since the wave system $2 = {r, j} is often a supersonic-flow component, it is important to test it for 
an extremum in problems of aerodynamic design work. In particular, the data of the present paper, together 
with the results of [5], can serve as a basis for the design of optimal shapes of aircraft. 

2. The optimal values of the functions I(f)(J1, J2) are found by the Lagrange multiplier method. For 
the chosen gas-dynamic variable f ,  the Lagrangian 

(' ) L(s) = t ! f )  + Ck3k -- (2.1) 
k----1 

depends on three variables: the wave strengths Jx and J2 and the Lagrange multiplier ,~. 
Differentiating (2.1) with respect to these variables, we obtain a system of two equations, one of which 

is the equation of constraint (1.1), and the other has the form 

2(f OI~ f) 0 ( r  _ i(f) 0I~ I) 0 ( ~ 1 3 1  -Jr" ~])232) (2.2) 
-~1 0,12 1 ~ 2  O J1 

Using relations (1.1)-(1.3), we rewrite Eq. (2.2) as 

2 OJ: : --0~2 \0-~21 l ~ :  0~lJ =0" (2.3) 

The derivatives in (2.3) are found by differentiating (1.2) and (1.3) with respect to the corresponding 
variables. 

Relation (1.1) is a geometrical constraint on the domain of existence for the system $2. For example. 
for 3s > 0, the inequality M > M, is a sufficient condition for the existence of the system, where the Mach 
number M, corresponds to a shock that rotates the flow through the angle 3s and retards it to the speed of 
sound behind the shock (M2 = 1). The value of M, is calculated from the formulas 

~ J , - 1  (1 - e)(J, - 1) # , - 1  1/('#, - 1"~ 2 
/3s = arctan 1 + e J, (J, + r + (J, - 1)' J* - 2------~ + 7 k  2: / + #*" (2.4) 

Figure la (curve 1) shows the function M,(/3s) (the fragment marked by the dashed curve in Fig. la is given 
on an enlarged scale in Fig. lb). Here and below, the calculation results are presented for 3' = 1.4. 
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For M,--~oo, the maximum angle of flow turning in 5'2 is found from (2.4): 

/3a = arctan((1 - ~)/(2vff)) (2.5) 

= 45.58 ~ 
Letting M1--+cr in (1.2), for ~s < 0 we determine the value of Mr that bounds from above the Mach 

number values ahead of an expansion wave capable of rotating the flow through the given angle Bs: 

1 1 1  arctan 1) arctan  = 8, (2.6) 

(curve 2 in Fig. la). 
It follows from (2.6) that the value of Mr decreases, as If~sl increases, and Mr = 1 for 

I bl- 2 v~ (2.7) 

(~b = --130.45 ~ point b in Fig. la). 
Thus, the domains of Mach numbers for which the system $2 can exist are bounded by the functions 

M.(fls) for Bs > 0 and Mr(B~) for ~ < 0; for/3~ > ~ and ~ < ~b, such a system does not exist for any Mach 
numbers. 

In the domain of existence of 5'2, the geometrical constraint is 

~s = w(M) - w(Ml(J1)) + ~2(Ml(J1), ,]2), (2.8) 

and Eq. (2.3) solves the formulated problem. 
3. As an example, a geometrically imposed system which is optimal for the static pressure (f  = p) is 

considered. Figure 2 gives a qualitative pattern of the strength of the system ,Is = J1J2 as a function of the 
shock strength -/2 with a geometrical constraint ~s = 0 (Figs. 2a-2e correspond to M = 1.05, 1.2, 1.35, 1.6. 
2.2, and 2.6). This pattern is constructed by numerical calculation of ,Is using (2.8) to find J1- It is evident 
that for small values of M (Fig. 2a), the function Js(J2) is smaller than unity for any J2 (overexpansion of 
the flow [5]) and has a minimum. 

As M increases (Fig. 2b), the minimum is shifted to the coordinate origin, and the strength of the 
system increases with an increase in -/2. This gives rise to the range of J2 values in which ,Is > 1 (the 
underexpansion region [5]). When M = MF1 (ME/ = 1.245), the value J2 = 1 corresponds to the minimum. 
In the range M e [MF~, M~], where (Ma = 1.478) (Fig. 2c), the function Js(J2) is monotonically increasing. 
When M = Ma (the point A in Fig. lb), the derivative OJs/OJ2 vanishes at the point J2 = J~, and when 
M > Ma (Fig. 2d), the static pressure behind the shock has a maximum for J2 < J~ and a minimum for 
J2 > Ja- As M increases further (Fig. 2e), the strength of the system decreases again. As for small values 
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Fig. 2 

of M, an overexpansion region appears in which Js < 1, and the value of J2 corresponding to the maximum 
tends to unity as M increases. When M > ME2 (ME2 = 2.539), the function Js < 1 for any values of ,/2, and 
it has a single extremum, namely, a minimum (Fig. 2f). A further increase in M does not change qualitatively 
the behavior of the static pressure behind the system. A similar pattern is observed when Bs # 0. 

Thus, depending on the parameters M and j3s, four regions (see Fig. 1) in which the system strength 
varies differently can be distinguished. The function Js(J2) is monotonic in region 2, and it has two extrema 
in region 3 and a single minimum in regions 1 and 4. 

The boundaries of the regions and the strengths of optimal waves are found by solving Eq. (2.3) under 
constraint (2.8). For the static pressure, the relation (2.3) reduces to the following cubic equation in MI: 

3 
A, M 2 n ( 1 )  = 0. (3.1) 

r t=0 

Here 

A3 = j2(1 A- ~)2 _ 4z(J2 A- z)2 

A2 = 4e(1 - ~)(J2 + r - 1) - 2(1 - r - 1) - 4(1 - 2~)(J2 + r 

A1 = (1 - r - 2r 2 - 1)(,/2 + ~) +. 4(J2 + ~)2 + (1 - r - 1 ) 2 ] ;  

Ao = -4(1 -- ~)2(J2 + ~)(J~ - 1). 

In the range J2 E [1, r the equation has three real roots, which are presented in Fig. 3. The smallest 
root (curve 3) has no physical meaning, because it corresponds to M1 < 1. The two other roots (curves 1 
and 2) together with the geometrical constraint 

w(M) = gs + w(Ml(g2)) -- ~2(J2) (3.2) 

and a given value of ~s make it possible to find a relationship between the optimal shock strength and the 
free-stream Mach number. A particular case of this relationship (~s = 0) is given in Fig. 4. 

The medium root of Eq. (3.1) (curve 1 in Fig. 3) corresponds to the minimum of the function Js(J2) 
at small Mach numbers (curve 1 in Fig. 4). The largest root (curve 2 in Fig. 3) determines the extrema for 
M > MA (curve 2 in Fig. 4). It is evident from the graphs that the maximum and minimum of the function 
Js(J2) are in the ranges J2 E [1, JA] and J2 E [J~, cr respectively. 

Curves 3 and 4 described by the functions M~I and M~2 bound from above regions 1 and 3 in Fig. 1. 
They intersect the axis of ordinates at points Fi. The formulas 

MFi = 1 5 - - ~  [ ( 3 -  7 ) T ~ / 7 2 -  1 ] ( i =  1, 2) (3.3) 

follow from Eq. (3.1) for ~ = 0, J2~1 ,  and J l ~ l  ( M I ~ M ) .  Previously, Chernyi [6] obtained these formulas 
by solving the problem of interaction of small perturbations with a shock. Uskov [4] obtained the same formulas 
by analysis of overtaking shocks in the plane ~, A. 

When ~ < 0, the functions M(J2) do not differ qualitatively from the curves of M(J2) in Fig. 4 for 
~s = 0. Hence, to find the functions M~i for ~ < 0 (the left branches of curves 3 and 4 in Fig. 1), it is 
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necessary to set J2 = 1 in (3.1). Then, relation (3.2) takes the form 

w(M) = w(M1) + Bs. (3.4) 

Here the values of M1 are calculated from formulas (3.3), and they depend only on 7- 
It is evident from (3.4) that  as IBsl increases, the Mach numbers decrease monotonically and reach 

unity for 

Bs = --w(MF,) (3.5) 

(see points e and h in Fig. 1, Be = -4 .7  ~ and Bh = -40-04~ Thus,  there are no regions 1 and 3 for ~s < ~e 
and Bs < Bh, respectively. 

For ~s > 0, a system exists if M > M, (2.4). The  possible strengths -/2 in such a system are in the 
range [J,, ~ ) ,  where J ,  is the shock strength calculated from M, [formulas (2.4)]. Thus,  for Bs > 0, the curves 
similar to those in Fig. 4 for Bs = 0 differ in that  their initial points correspond to J2 = J , .  The  functions 
M~i(Bs ) describing the right branches of curves 3 and 4 in Fig. 1 are found by formula (3.1) f rom the condition 
J2 = J , .  Since B2(J2) = ~s for J2 = J , ,  it follows from (3.2) that  ,/1 = 1, Mz = M, and the Mach numbers 
M~i are the medium and largest roots of Eq. (3.2) (curves 1 and 2 in Fig. 3). 

The shock s t rength  Jc corresponding to the point c of intersection of curves 1 and 3 in Fig. lb is 
determined as the third root of the cubic equation 

4~Jc a + 3(1 - 6)2J 2 - (5~ 2 - 26 + 5)Jr + 1 - 36 - 62 - 63 = 0, (3.6) 

which is obtained by simultaneous solution of Eqs. (2.4) and (3.1). Here Jc = 1.466, Mc = 1.305, and 
~c = 6-46 ~ When Bs > Bc, region 1, which exists only for angles Bs E [Be, ~c], disappears. 

The function M~2(Bs ) has a min imum at point g (Fig. la), which corresponds to the shock strength 
Jg" The value of Jg is found by solving the equation 

3 

B.(M~2)"  = 0, (3.7) 
n=0 

where B3 = 2Jg(1 + 6) 2 - 86(Jg + 6), B2 = 46(1 - 6)y - 2(1 - 62)Jg(3J9 - 2) - 8(1 - 26)(J  9 + e), B1 = 
2(1 - 6)[2(1 - 26)y + 4(Jg + 6) + (1 - 6 ) J g ( J g  - i ) ( 2 J  a - 1)], B0 = - 4 ( 1  - 6 ) e y ,  y = ( J ~  - 1) + 2 J a ( J  9 + ~), 

and M~2 is calculated from formula (3.1) (J9 = 1.989, and M s = 2.089, and Bg = 12.7~ 
The Mach number  MA separating regions 2 and 3 for a given value of Bs corresponds to a minimum 

(point A in Fig. 4) of the implicit function M(J2, Bs) given by formula (3.2) under the constraint  (3.1). To 
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determine the min imum Eq. (3.2) can be rewritten as 

u(M) - w(M) - ~s = w(Ml(J2)) -/32(J2).  (3.8) 

The left-hand side of (3.8) is a monotonic function of M, and the right-hand side depends only on J2. 
Hence, if the function u(M) has e min imum for some J2 = JA, M(J2) reaches e min imum for the same J2. 
The strength J a  does not depend on/~s. 

Testing (3.8) for an ex t remum leads to the following equation for Ja :  

2 3 

JA(1 + e) ~--~ (n + 1)Aa+I(JA)(M~)" + 2~1 ~ B,(JA)(M~) n = 0. (3.9) 
n = 0  n = 0  

Here A,+I(JA) and Bn(Jh) ere coefficients of Eqs. (3.1) and (3.7), respectively; M1 = MI(JA) and is 
calculated as the largest root of the cubic equation (3.1) ( Jh  = 3.434 and M1/X = 2.282). 

Thus, for any fie, the function MA(~s) is described by the relation 

w(MA) =/38 + g(7), (3.10) 

and it is a monotonic function of Bs (curve 5 in Fig. 1). Curves 4 end 5 intersect at point d, whose coordinates 
are calculated from the conditions MA = M1A and Bd = ~2(J/x, MA), where Bd = 22-56~ Curve 5 intersects 
the abscissa at point q. The  angle/3q corresponding to this point is found from (3.10) subject  to the condition 
MA = 1 [w(M/x) = 0]. In this case ~q = -11.27 ~ 

Thus, region 3 exists only in the range of angles [f~q, fld]. 
4. For fixed values of ~s end M, the shock strength ,/2 can vary in the range [Jv, J~]. The left bound 

J~ is a function only of the angle/~s: the strength Ja - 1 for Bs~0, which corresponds to rotation of the 
expansion flow through the angle/38, end Jv = J.(fls) for & > 0 [see (2.4)]. The right bound Jo is determined 
from Eq. (2.8) subject to the condition Jo = J.(M1). 

The extreme of the function Js(J2) ere found within the interval (Ja, Jo), and the boundary points 
J2 = J~ and ,]2 = Jo are local extreme. In this case, as can be seen in Fig. 2, J~ = 1 corresponds to the local 
maximum of the function J~(J2) in the ranges M E [1, M&] and M E [ME2, cr For M E [M&, ME2] the value 
of Ja determines the local min imum of the system strength. 

The global max imum of the static pressure behind the system 5'2 for a given value of/38 is reached 
when J2 = Jo end M = Mw. The  Lagrange method is used to determine Mw. The Lagrangian 

Jo+e ~(x+,)/2, 
L,.,,=J,~ #Jo(l+~-J~)] + A[w(M,)-w(M)-B.(J ,~)+/3s]  (4.1) 

depends on three variables: Jo, M, and A. The value of M1 is found on the condition M2 = 1 from the equation 

#1 = Jo(1 + eJo)/(go + e), (4.2) 

and the angle ~,(J~) is found from (2.4). 
Differentiating (4.1) with respect to J~, M, and A with allowance for (4.2) and eliminating the Lagrange 

multiplier A, we obtain the following equations for the Mach number  Mw: 

Here 

/~, = ~,(J0) + oa(Mw) - w(Ml(J0));  

M 2 = (x2=k<x 4 - 4x2)/2. 

1 (4-I) 2 
x = - [ r  r = 

"7 Jo(Jo + e)(1 + eJo) 
• i • 1 -  1 J~ + 2eJo + 1 

M21#1 (Jo +e) 2 ; 

(4.3) 

(4.4) 

, / & - i  2 & + 1  

~ = V i St- T f o J o ( J ~ -+ -d-o s  + e ) " 
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It is evident from (4.3) and (4.4) that the function Mw(/3s) (curve 6 in Fig. 1) is parametric. The 
quantity Jo serves as a parameter. 

The radicand in (4.4) vanishes if x = 2; in this case Mw = v~, Jo = Jz (Jz = 3.882), and/3s = 3.- 
(/32 = 4.51 ~ see point z in Fig. lb). In the range J,~ E [Jz, oo), the radicand is larger than zero; the plus sign 
of the root corresponds to Mw E [,Cry, oo), and the minus sign corresponds to Mw E (1, v~]. The angle 13s+13b 
for Mw-,1 [see (2.7)] and 5s--*5a for Mw--+oo [see (2.5)] (Fig. lb). Thus, the global extremum of the static 
pressure is reached for any/3s from the domain of existence of the system $2. 

5. The geometrically imposed systems S~ I) can be optimal not only for the static pressure, but also 
for the temperature, density, and velocity head. The boundaries of the nonmonotone range and extrema of 
functions are found from Eq. (2.3) subject to condition (3.2). 

Equation (2.3) has the simplest form for the temperature [I(I) = I(T)]: 

J2(J2 + e) + (1 + e J2) (5.1) M12 + 
1) J2(J2 + 1)(1 + e ) +  (1 + eJ2)" 

For given M and/3~, this makes it possible to consider (2.8) as an equation for a single unknown J2. 
The calculations performed show that for small Mach numbers (M E [1, Mr]), the temperature has a 

minimum for J2 = Jr, which is determined from Eq. (3.2) subject to condition (5.1). For M > Mr, the function 
I(T)(J2) is monotonic. 

For r > 0, the function Mt(/3s) (curve 7 in Fig. lb) is found from (3.2) subject to the condition that 
M = MI(J2) [see (5.1)]. For/3s < 0, one should set J2 = 1 in (3.2); in this case, Mx = 2/v~,  as can be seen 
from (5.1). 

The nonmonotone range of I(T)(J2) exists for the range of angles [/3u,/3v]. The angle/3,, (point u in 
Fig. lb) is determined from (3.2) at M = 1, J2 = 1, and M1 = 2/v/-3 in the form 

71" 
/3u = ----~arctan,/- 

, /3 v3  

(13~ = -2.49 ~ The strength Jv calculated by the formula 

Ii~27-4(i+6)311127-4(1+e)3 
J v =  2 +  108 + 2 -  108 

(5.2) 

corresponds to the coordinates of point v (Fig. lb). Formula (5.2) is obtained by simultaneous solution of 
Eqs. (2.4) and (5.1). 

The values of M, [formula (5.1)] and/3v [formula (3.2)] can be determined from the known value of J,, 
(My = 1,257 and/3~ = 5.16~ 
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